Sulis: An Open Source Transfer Decoder for Deep Syntactic Statistical Machine Translation
نویسنده
چکیده
We evaluated the productivity increase of statistical MT post-editing as compared to traditional translation in a two-day test involving twelve participants translating from English to French, Italian, German, and Spanish. The test setup followed an empirical methodology. A random subset of the entire new content produced in our company during a given year was translated with statistical MT engines trained on data from the previous year. The translation environment recorded translation and post-editing times for each sentence. The results show a productivity increase for each participant, with significant variance across inviduals.
منابع مشابه
A Hybrid Machine Translation System Based on a Monotone Decoder
In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...
متن کاملF-structure Transfer-based Statistical Machine Translation
In this paper, we describe a statistical deep syntactic transfer decoder that is trained fully automatically on parsed bilingual corpora. Deep syntactic transfer rules are induced automatically from the f-structures of a LFG parsed bitext corpus by automatically aligning local f-structures, and inducing all rules consistent with the node alignment. The transfer decoder outputs the n-best TL f-s...
متن کاملLearning Transfer Rules for Machine Translation with Limited Data
The transfer-based approach to machine translation (MT) captures structural transfers between the source language and the target language, with the goal of producing grammatical translations. The major drawback of the approach is the development bottleneck, requiring many human-years of rule development. On the other hand, data-driven approaches such as example-based and statistical MT achieve ...
متن کاملAdding syntactic structure to bilingual terminology for improved domain adaptation
Deep-syntax approaches to machine translation have emerged as an alternative to phrase-based statistical systems. TectoMT is an open source framework for transfer-based MT which works at the deep tectogrammatical level and combines linguistic knowledge and statistical techniques. When adapting to a domain, terminological resources improve results with simple techniques, e.g. force-translating d...
متن کاملMulti-Engine Machine Translation with an Open-Source Decoder for Statistical Machine Translation
We describe an architecture that allows to combine statistical machine translation (SMT) with rule-based machine translation (RBMT) in a multi-engine setup. We use a variant of standard SMT technology to align translations from one or more RBMT systems with the source text. We incorporate phrases extracted from these alignments into the phrase table of the SMT system and use the open-source dec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Prague Bull. Math. Linguistics
دوره 93 شماره
صفحات -
تاریخ انتشار 2010